Heat Flux Determination From Measured Heating Rates Using Thermographic Phosphors

A new method for measuring the heating rate (defined as the time rate of change of temperature) and estimating heat flux from the heating rate is proposed. The example problem involves analytic heat conduction in a one-dimensional slab, where the measurement location of temperature or heating rate coincides with the location of the estimated heat flux. The new method involves the solution to a Volterra equation of the second kind, which is inherently more stable than Volterra equations of the first kind. The solution for heat flux from a measured temperature is generally a first kind Volterra equation. Estimates from the new approach are compared to estimates from measured temperatures. The heating rate measurements are accomplished by leveraging the temperature dependent decay rate of thermographic phosphors (TGP). Results indicate that the new data-reduction method is far more stable than the usual minimization of temperature residuals, which results in errors that are 1.5–12 times larger than those of the new approach. Furthermore, noise in TGP measurements was found to give an uncertainty of 4% in the heating rate measurement, which is comparable to the noise introduced in the test case data. Results of the simulations and the level of noise in TGP measurements suggest that this novel approach to heat flux determination is viable. [DOI: 10.1115/1.1915389]
in the solution, such as regularization [18] and future time methods [7]. These approaches require a certain amount of bias to be added to the solution and they usually relax the exact matching of data to obtain a “fit” of the measured data by the model. The residual, which is the difference between the model temperature and the measurement, is minimized with respect to the unknown flux. Although these solution methods have proven to be extremely practical and successful, the solution requires a bit of art. Too much bias and the solution will not match the data; too little bias and the solution will contain large oscillations. Note that these solution approaches have been studied extensively, and the appropriate level of bias is usually obtained by requiring the residual to be of the order of the measurement noise [11].

Despite the apparent difficulties of reducing temperature data, the advantages of temperature measurement devices coupled with inverse techniques make this approach to heat flux determination attractive. For example, because temperature measurement devices are usually thinner than heat flux gauges [19], the time response is much better and the effect on the incident flows can be minimized. In addition, temperature measurements are easier to calibrate and the data reduction is not limited to one-dimensional estimation [20]. Therefore, it can be argued that temperature measurements and inverse data reduction techniques are preferable.

Despite advances in techniques devised to solve ill-posed problems and account for noisy data, the fact remains that appropriate data reduction remains a balancing act between introducing smoothing bias and amplification of noise. In many cases, solutions still contain unacceptable errors [12]. The present work suggests that many of the stability problems associated with the inverse heat conduction problem can be mitigated by measuring a different quantity, namely the heating rate [21,22]. The heating rate in the present context is defined as the time rate of change of temperature for a given location and time. It will be shown that the data reduction is inherently more stable if this quantity could be measured. However, no method existed (until now) to measure the heating rate directly. The heating rate approach represents a departure from typical heat flux determination methods such as those discussed briefly above, because the temperature is not explicitly required for the estimation of heat flux.

If the heating rate could be measured, the solution of the conduction equation for an unknown boundary flux becomes a Volterra equation of the second kind. It is well known that first kind Volterra equations are ill-posed in the sense of Hadamard [10], and that second-kind equations are not. In fact, many inverse solutions involve approximating the ill-posed equation by converting it to a Volterra equation of the second kind [23].

The objectives of the present work are to demonstrate a stable method for estimating heat flux from measured heating rates and to describe a technique to measure heating rate. The estimation component involves test problems with specific boundary/initial conditions and simulated noise, which is a common approach to evaluating inverse methods. The measurement technique involves the temperature sensitive decay rate of thermographic phosphors (TGP) [24]. Although TGPs have been used to measure temperature (particularly for remote measurement), the current approach will leverage particular properties of TGPs to obtain measurements, which are proportional to the heating rate, not temperature.

Thermographic phosphors are rare-earth-doped ceramics that fluoresce when exposed to ultraviolet radiation or similar excitation. In general, the intensity, frequency line shift, and decay rate are all temperature dependent. As a result, they have been used for remote temperature sensing in many applications [25]. Many materials have been used and tuned for specific applications with a great deal of success [26–28]. However, they have never been used to predict a heating rate. It is the strong dependence of the decay rate on temperature that will be leveraged to acquire a heating rate. This simple proof-of-concept described herein demonstrates the ability to extract heat fluxes with far greater accuracy than previously possible.

Theory

The following linear heat diffusion example will be used for illustration purposes. Assume one-dimensional conduction in a slab of length L. The governing equation for temperature change is given as

\[
\frac{\partial^2 \theta}{\partial \xi^2} = \frac{\partial \theta}{\partial t}, \quad 0 < \eta < 1, \quad \xi > 0,
\]

subject to the boundary conditions

\[
-\frac{\partial \theta}{\partial \eta} \bigg|_{\eta=0} = Q(\xi),
\]

and the initial condition

\[
\theta(\eta, 0) = 0.
\]

The spatial and temporal coordinate have been nondimensionalized (i.e., \(\eta = x/L, \xi = at/L^2\), where \(a\) is the thermal diffusivity). The heat flux \(Q(\xi)\) at \(\eta = 0\) is a continuous function of \(\xi\) and is presumed known. Using integral transforms, the infinite series solution is found to be [29]

\[
\theta(\eta, \xi) = 2 \sum_{n=1}^{\infty} \cos(\beta_n \eta) \int_0^\xi Q(\xi') e^{\beta_n \xi'} d\xi',
\]

where the eigenvalues are the positive roots of \(\cos(\beta_n) = 0\), i.e., \(\beta_n = (2n-1)\pi/2\) where \(m = 1, 2, 3, \ldots\).

If the heat flux \(Q(\xi)\) is unknown, Eq. (5) is a Volterra equation of the first kind for a known temperature, and the solution is unstable for discrete temperature measurements. Because TGP measurement is an optical technique, measurements can only be made on the surface \(\eta = 0\). If we assume that the temperature on the surface is measured at \(N\) discrete times, then an estimate for the unknown heat flux can be found using standard inverse solution techniques. It can be argued that because measurements are restricted to the boundary, inverse methods are not required. In this case, the measured surface temperature can be treated as a boundary condition for the forward conduction solution. The heat flux can then be obtained by differentiating this solution. Because measurements are discrete and contain noise, however, inverse techniques can serve to stabilize the solution [14].

In the present work, the solution for the heat flux from measured temperatures involves inverting Eq. (5). For simplicity, we assume that the time increment between each discrete measurement is constant \((\Delta \xi)\) and that the integral over all times in Eq. (5) is written as a summation of integrals over each time step. The discrete temperature solution at the surface then becomes

\[
Y_r = 2 \sum_{n=1}^{N} \sum_{i=1}^{r} \int_{\xi_{i-1}}^{\xi_i} Q(\xi') e^{\beta_n (\xi_i - \xi)} d\xi',
\]

where \(Y_r\) indicates that the temperature is a discrete measurement at the surface, not a continuous function, and \(r\) indexes time such that \(\xi_i = r \Delta \xi, \quad r = 0, 1, 2, \ldots\) and \(Y(\xi_i) = Y\). Now, the heat flux is approximated analytically by assuming a piecewise integrable function \(Q(\xi')\) over each time step and solving for the unknown function parameters at each time step. Note that a piecewise constant assumption would theoretically work here. However, the summation in the heating rate formulation (developed later) does not converge in a finite number of terms without additional assumptions. Therefore the following linear approximation is considered:
\[Q(\xi') = Q_0 - \frac{Q_s}{\Delta \xi} (\xi_i - \xi'), \tag{7} \]

where \(\Delta \xi \) is the time step size, \(\xi_i < \xi' \leq \xi_i \), and \(Q_0 = Q(\xi_i) \). The integration can be performed analytically leading to a set of \(N \) algebraic equations

\[
Y_i = 2 \sum_{m=1}^{\infty} \left\{ \sum_{j=1}^{r} \frac{Q_s}{\beta_m} e^{\beta_m (\xi_i - \xi')} - e^{\beta_m (\xi_i - \xi')} \right\} \frac{Q_s}{\beta_m \Delta \xi} \]

\[
= e^{\beta_m (\xi_i - \xi')} (1 + \beta_m \Delta \xi) \right\}. \tag{8} \]

Note that \(Y_0 \) and \(Q_0 \) are assumed to be zero. The solution of the foregoing expression leads to an estimate of the heat flux at each time step.

The proposed approach to predicting heat flux requires measurement and calculation of the heating rate. A heating rate can be found analytically by differentiating Eq. (5) with respect to time. The formulation for heating rate, given as

\[Y + n = \frac{dn}{dt} \tag{12} \]

where \(\tau \) is the lifetime of an excitation center. Assuming that \(\tau \) is a constant in time, the solution can be written as

\[\frac{n}{i} - \frac{n}{n_o} = \exp \left[-\frac{t}{\tau} \right]. \tag{13} \]

where the intensity \(i \) is proportional to \(n \), and \(I_o = n_o \) are values at the beginning of the decay. The decay time \(\tau \) can be estimated from a series of intensity measurements collected during the decay. If we assume that the phosphor has been completely and carefully characterized, the decay time is a material property that is a well-known function of temperature. Calibration curves are generated that relate \(\tau \) to temperature for a given phosphor. By estimating \(\tau \) from a single pulse, we can deduce the temperature from these calibration curves. This approach is commonly used to predict temperature from phosphor decay measurements [33]. For many interesting engineering problems, though, the temperature is not constant in time. Because the lifetime \(\tau \) is generally a function of temperature, we expect \(\tau \) to change in time as well. Therefore, we have augmented the model in Eq. (13) to use a first-order Taylor series expansion of the decay time to introduce the derivative of \(\tau \). Now the normalized intensity,

\[\frac{n}{I_o} = \exp \left[-\frac{t}{\tau + \frac{d\tau}{dt}} \right], \tag{14} \]

contains three parameters \(I_o, \tau, \) and \(\frac{d\tau}{dt} \) that are estimated from a series of intensity measurements using standard parameter estimation techniques [34]. This simplistic approach is strictly valid for small variations in temperature only because the derivative of the decay time is considered to be a perturbation of \(\tau \). In general, \(\tau(T(t)) \), so if the temperature changes significantly, the governing equation for electron concentration, must be solved for specific time dependencies of \(\tau \) on time. For steady-state data (as in the present analysis), \(\frac{d\tau}{dt} \) should be identically zero. Therefore, this approximation is justified for the present work.

The heating rate can now be computed using the chain rule as

\[\frac{d\theta}{dt} = \frac{d\theta}{d\tau} \frac{d\tau}{dt}, \tag{15} \]

where \(d\theta/d\tau \) is a temperature dependent material property and is derived from the same calibration curves used to obtain temperature from decay time. The parameter of interest \((d\tau/dt) \) is obtained through a fit of intensity measurements. Through test cases, we will demonstrate that prediction of \(d\tau/dt \) and subsequent data reduction of \(d\theta/d\tau \) to heat flux is inherently more stable than estimating heat flux from temperature measurements.

Results

Data reduction. To compare different methods for predicting heat flux, a known analytic function was chosen as the exact heat flux, \(Q \), to which all estimates will be compared. Table 1 lists each type of heat flux that was examined. The exact analytic solution to both the temperature, \(Y \), and the heating rate, \(H \), [Eqs. (5) and

562 / Vol. 127, June 2005 Transactions of the ASME
(9), respectively] were calculated to provide the measurement data from which the estimates were derived. The time step is $\Delta \xi = 0.02$ giving 51 samples within the $\xi=1$ duration of the experiment. Normally distributed random noise was added to the measurements to evaluate how the estimators behave when measurement error exists in the temperature, Y_n, and heating rate, H_n. The magnitude of the noise added to the temperature data has a standard deviation of $\sigma = 0.02$, which provides visual evidence of errors in the temperature for unity heat fluxes.

To provide a meaningful and fair comparison between the heating rate and temperature estimation approaches, it is not clear how much noise should be added to the heating rate data. After all, the noise is primarily a function of the measurement equipment, which is entirely different than temperature measurement devices. As a first approximation, the same noise level could be added to both data sets. However, for a given heat flux, the magnitude of the variation in heating rate is larger than the variation in temperature. For example, given a triangular heat flux with a value of unity at the peak, the maximum temperature rise is approximately 0.5. The maximum heating rate is approximately 2. Therefore, the signal is 4 times that of the temperature data. Consequently, to make the signal to noise ratio between the two data sets comparable, a noise level of 0.08 was added to the heating rate data to obtain H_n. Of course the relative magnitude of each signal varies depending on the heat flux. Nevertheless, the triangular heat flux was considered to be representative of all fluxes tested and in all cases the amount of noise added to the heating rate was four times that added to the temperature data. Note that this approach hardly seems fair in the zero flux case, when there should be zero signal.

To provide an additional comparison, a second heating rate is generated by differencing the noisy temperature data Y_n. Because noisy data is being differentiated, we expect errors associated with these data H_n to be large. Table 1 reports the error norms $|Q - Q_e|$, where Q is the exact heat flux and Q_e is the estimated heat flux indicated in the table for each set of fabricated data. In general, the errors associated with estimation based on the heating rate are less than the errors for the temperature data.

The estimates were obtained assuming a piecewise linear heat flux as described in Eqs. (11) and (8). In the case of zero flux and triangular flux, the linear approximation matches exactly with the analytic heat flux. Therefore, the error in the estimates using exact data (Y and H in Table 1) are nonzero but small. These values are nonzero because the infinite series is approximated with a finite number of terms. The number of terms used in each case was 2000. The norm of the error associated with 2000 terms is of the order of 10^{-4} for the triangular case. Using exact data for the sine case, for example, still yields a nonzero error because the integral of the piecewise linear approximation does not match the analytic solution exactly.

To establish the statistical significance of the difference between the estimates derived from different data, the sample mean \bar{x} and sample variance s^2 of the errors for each simulation were calculated. Further, the distributions were checked for normality by plotting the standardized normal scores against the observed errors. A linear shape verified that all errors are normally distributed. To ensure that none of the methods contain significant bias in the solution—meaning that the estimates were consistently either over- or underpredicted—the calculated mean of the error was compared to a mean of zero. In all cases, the significance test, given by

$$\frac{\bar{x} - \mu_0}{s/\sqrt{n}} > t(\alpha;n-1), \quad \mu_0 = 0,$$

was satisfied for the two-sided 95% confidence level. Therefore, the use of Eqs. (8) and (11) do not introduce significant bias.

Evaluation of the “quality” of the estimates proceeds from a comparison of the variances. Because the focus of this work is to evaluate the heating rate approach to that of a temperature measurement approach, the null hypothesis assumes that variances of the errors between any two estimates are equal. If the null hypothesis is accepted, the two approaches generate estimates whose errors are statistically similar. The alternative hypothesis is that the variance of the temperature approach (σ_1^2) is larger than that of any other approach (σ_2^2).

$$H_0: \sigma_1^2 = \sigma_2^2$$

(17)

$$H_1: \sigma_1^2 > \sigma_2^2$$

(18)

Because we are claiming that noise becomes amplified, the variance of the noise is a good measure of the amount of amplification. The ratio of variances has an F-distribution $F(\alpha;N_1,N)$ for given degrees of freedom $N=n-1=50$ for both samples [35]. At a confidence level of 95%, $F=1.6125$. Therefore, the null hypothesis must be rejected for any ratio greater than 1.6125, which means that the difference in the variance is statistically significant. Table 2 shows the values for the comparison between errors from the temperature approach and the two heating rate approaches. Based on this significance test, the only simulations where the variance could not be considered significantly different is H_{35} for the sinusoidal and square heat flux cases. In all other tests, the null hypothesis is rejected and the heating rate approach is considered “better” than the temperature approach.

The first test case examined is the zero heat flux. The exact surface temperature is zero in this case, but the temperature signal with added noise is nonzero and shown in Fig. 1. From the zero heat flux, a zero heat rate is also found (shown in Fig. 2 along with noisy data). The first noisy signal H_n was obtained by adding normally distributed random values with a standard deviation of $\sigma=0.08$ (four times the noise assigned to the temperature signal) to the zero signal. The second noisy signal was generated by calculating a backward difference of the noisy temperature data Y_n. This is a simplistic approach to obtaining a heating rate that demonstrates how noise in the temperature is amplified by differencing. The standard deviation of noise inherent to H_d is $s=0.95$, which is nearly 50 times that of the temperature data and more than 11 times that of H_n.

Heat flux estimates for the zero flux case are shown in Fig. 3 for the noisy temperature and heating rate data sets. It is immediately

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Y</th>
<th>Y_n</th>
<th>H</th>
<th>H_n</th>
<th>H_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>0</td>
<td>1.5171</td>
<td>0</td>
<td>0.1178</td>
<td>0.9488</td>
</tr>
<tr>
<td>triangle</td>
<td>0.0006</td>
<td>1.5171</td>
<td>0.0006</td>
<td>0.1181</td>
<td>0.9656</td>
</tr>
<tr>
<td>sine</td>
<td>0.3988</td>
<td>1.5509</td>
<td>0.9215</td>
<td>0.9149</td>
<td>1.9987</td>
</tr>
<tr>
<td>square</td>
<td>0.4914</td>
<td>1.4693</td>
<td>0.9735</td>
<td>0.9363</td>
<td>1.1972</td>
</tr>
</tbody>
</table>

Table 2: Significance test for variance of errors between the temperature case and the indicated heating rate approach. For values greater than $F(0.05;50,50)=1.6125$, the hypothesis that the variances are equal must be rejected.

<table>
<thead>
<tr>
<th>Test Case</th>
<th>H_n</th>
<th>H_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>166.2</td>
<td>2.560</td>
</tr>
<tr>
<td>triangle</td>
<td>166.2</td>
<td>2.471</td>
</tr>
<tr>
<td>sine</td>
<td>2.898</td>
<td>0.602</td>
</tr>
<tr>
<td>square</td>
<td>2.472</td>
<td>1.507</td>
</tr>
</tbody>
</table>

Table 1: Reported values are norms of the error between the exact heat flux, Q, and the estimated heat flux Q_e, i.e., $|Q - Q_e|$ where e corresponds to the type of estimate given by the column labels.
obvious that the estimates produced from the heating rate data are far superior to estimates from temperature data. As listed in Table 1, the norm of the errors is 12.9 times larger for the temperature data and 8.05 times larger for the differenced heating rate data as compared to the noisy heating rate data \(H_n \). Ironically, the differencing of temperature data \(H_d \) seems to produce better estimates than the temperature data \(Y_n \). This plot and the reported errors also indicate how much the errors are amplified. Table 3 shows the error in the estimate normalized by the error in the measurement. This ratio of error in the estimate to error in the measurement is given as

\[
\frac{E}{N} = \frac{|Q - Q_{Y_n}|}{|Y - Y_n|},
\]

where the temperature data and estimates can be replaced by the corresponding heating rate data and estimates. For the estimates from temperature measurements \(Y_n \), the error to noise ratio is approximately 11 for the triangular and zero flux cases, but the error to noise ratio of estimates from the heating rate \(H_n \) is 0.2 and from differenced heating rate \(H_d \) is 0.1. The \(E/N \) ratio for \(H_d \) is so low because the noise level in the signal is so high. Therefore, this metric does not allow quantitative evaluation of the estimates from measurements but provides a sense of how each method amplifies the noise. In fact, the \(E/N \) ratio for both \(H_d \) and \(H_n \) should be comparable when compared to the \(E/N \) ratio for \(Y_n \).

The next test case examined is the triangular heat flux, whose surface temperature history is shown in Fig. 4 with and without additional noise. As in the zero flux case, the noisy signal is obtained by adding a normally distributed random component with standard deviation of \(\sigma = 0.02 \). Visually, the noise is a small percentage of the actual signal (~4%). The noisy temperature history is used to predict heat fluxes by inverting Eq. (5) with the method described above. This is inherently an unstable process, and the estimate from noisy data, \(Q_{Y_n} \), in Fig. 5 shows that small errors become amplified in the solution. No attempt to relax the

<table>
<thead>
<tr>
<th>Test Case</th>
<th>(Y_n)</th>
<th>(H_n)</th>
<th>(H_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>11.14</td>
<td>0.293</td>
<td>0.106</td>
</tr>
<tr>
<td>triangle</td>
<td>11.14</td>
<td>0.194</td>
<td>0.106</td>
</tr>
<tr>
<td>sine</td>
<td>11.39</td>
<td>1.506</td>
<td>0.100</td>
</tr>
<tr>
<td>square</td>
<td>10.79</td>
<td>1.541</td>
<td>0.111</td>
</tr>
</tbody>
</table>

The next test case examined is the triangular heat flux, whose surface temperature history is shown in Fig. 4 with and without additional noise. As in the zero flux case, the noisy signal is obtained by adding a normally distributed random component with standard deviation of \(\sigma = 0.02 \). Visually, the noise is a small percentage of the actual signal (~4%). The noisy temperature history is used to predict heat fluxes by inverting Eq. (5) with the method described above. This is inherently an unstable process, and the estimate from noisy data, \(Q_{Y_n} \), in Fig. 5 shows that small errors become amplified in the solution. No attempt to relax the
solution, introduce bias or otherwise implement any stabilization technique was made. In practice, a true inverse procedure would be implemented to achieve less noisy results than the exact matching procedure used here. In fact, the zero residual method (often called Stolz’s method [32]) is a worst-case scenario. However, the method was chosen to illustrate that estimates from a noisy heating rate can provide reasonable and accurate estimates without bias. Figure 6 shows the estimates produced from the heating rate data sets, which are shown in Fig. 7. Both sets of estimates appear to match the exact solution closer than the estimates in Fig. 5. Note how closely the heating rate measurements with noise H_n visually matches the exact solution. The results suggest that direct matching solution of the Volterra equation of the second kind is not nearly as sensitive to measurement errors as the Volterra equation of the first kind. In fact, the error in the noisy estimate, Q_{H_n}, appears to be damped, and the solution contains little bias and almost no noise. However, the surprising feature is that Q_{H_d}, which was produced from a signal H_d (open triangles in Fig. 7) whose noise is 20% of the actual signal, faithfully reproduces the original heat flux with errors comparable to Q_{Y_n}. Table 1 demonstrates that the estimates from all varieties of the heating rate (H, H_n, and H_d) contain very little error.

The next case examined (sine-wave heat flux) does not have an analytic solution that can be modeled exactly with a piecewise linear approximation. Therefore, there is an error inherent to the estimates even with exact data. For this demonstration, a sinusoidal heat flux with a frequency of the order of the Nyquist frequency was selected. The high-frequency component in this data will further exercise the methods. The exact temperature response to a sine-wave heat flux is shown in Fig. 8. Similarly, the heating rate measurements are shown in Fig. 9. In both cases, even the exact data appear to be noisy because of the piecewise linear approximation and the high-frequency content of the heat flux.
Figures 10 and 11 show the difference in the flux instead of the actual estimate (i.e., $Q - Q_e$). The apparent periodicity of the error in the estimates from the heating rate measurements (Fig. 11) indicates some bias in the solution. In fact, the heating rate underpredicts the flux by an average of 12% at the peaks. The bias is a result of the piecewise linear approximation and, incidentally, is still smaller than the error associated with the estimates derived from temperature data (see Fig. 10).

The final test case is particularly interesting because of the discontinuity inherent to a square flux. At the point when the flux is instantaneously turned on, the heating rate would theoretically be infinite. A measurement of this sort is not physically possible, and a piecewise linear approximation of the flux will not capture this discontinuity. However, the temperature remains finite and measurable. Therefore, we expect significant errors at the times when the flux is turned on and off for the heating rate case and errors similar to previous test cases for the temperature measurements. Temperature measurements and heating rate measurements are shown in Figs. 12 and 13, respectively. Note that the magnitude of the heating rate is large at the discontinuity compared to the other test cases. Also, the reader is reminded that the amount of noise added to the measurements is 0.02 and 0.08 to the temperature and heating rate measurements respectively. The estimates derived from temperature measurements (Fig. 14) exhibit the usual amplification of noise as the previous test cases. However, the estimates derived from heating rates (Fig. 15) show somewhat different behavior than the previous test cases. The heating rate measurement does not capture the discontinuity well. In fact, the error shows up as a bias for all times after the jump. Interestingly, the norm of the error is comparable to that from temperature measurements. Nevertheless, noise is often more desirable than bias if an experimenter must choose between the two. This artifact, however, does not necessarily mean that heating rate cannot be considered a desirable quantity to measure. For example, Fig. 16 shows how...
the error (and therefore, bias) decreases with increased sample rate, which is contrary to temperature measurement behavior. In fact, for high sample rates, errors associated with temperature data are orders of magnitude greater than those associated with heating rate measurements. Consequently, the possibility for eliminating bias in the heating rate estimates exists, but measurement noise is omnipresent in estimates from temperature data.

Estimation of τ by decay measurement. As a demonstration of heating rate determination, the phosphor $\text{La}_2\text{O}_2\text{S}:\text{Eu}$ was measured at steady state to characterize the effects of noise. Single shot data are shown in Fig. 17 along with an exponential fit of the data [see Eq. (13)]. The estimated parameters are $\tau=2.31$ ms and $I_0=0.00239$ V. At steady state, the heating rate, and therefore the change in decay time, is expected to be near zero. Therefore estimates of the decay time τ should be consistent between models [Eqs. (13) and (14)] and the change in the decay time $d\tau/dt$ from Eq. (14) should be negligible. From the estimates using the new model [Eq. (14)], the decay time is 2.21 ms, which is 5% different from the constant model, and the change in decay time is 0.022 s/s, which is smaller than the noise in the estimate for τ and considered negligible. Because of the noise in the measured signal, the change in heating rate is nonzero. However, note that photomultiplier tube (PMT) measurements are inherently noisy and no electronic means were used to smooth or average the data. Despite the noise, the change in decay time has little contribution to the overall intensity decay (see Table 4). Further the decay times predicted from each model are consistent. As a side effect of the estimation procedure, we can also obtain the maximum intensity, which is also consistent between models. The errors in the estimates given by 95% confidence intervals is of the order of the noise introduced in the data reduction test cases discussed in the previous section. Therefore, the magnitude of the errors observed in the estimates of the test cases is comparable to what we might expect to obtain from TGP measurements.

Based on noise in the steady-state single-shot measurement, we can evaluate the errors in the estimation procedure when the temperature changes during the decay. Data were fabricated by assuming $\tau=2.31$ ms from the actual measurement. Then an artificial $d\tau/dt=0.3$ was added in Eq. (14) to obtain a new intensity measurement. The error due to noise in the actual measurement was then superimposed onto the exact signal, resulting in noisy data that includes a nontrivial change in decay time. Figure 18 shows the fit of fabricated data using the typical constant decay model [Eq. (13)] and the new model, which includes the change in the decay time [Eq. (14)]. If the decay time changes, as in the foregoing example, then a significant difference between the fits of Eqs. (13) and (14) are seen (Fig. 18). Table 5 gives the estimated parameters for the foregoing example. Agreement between the linearly varying model and the fabricated data is exceptional demonstrating that the measurement noise may not affect heating rate determination from phosphor measurements. However, transient measurements need to be made to verify the utility of the method.

The uncertainty in the $d\tau/dt$ estimate is 3.3% of the actual estimate. In addition, the uncertainty in the estimate of τ is 4.2% of the actual estimate. Because the estimate of τ and estimate of $d\tau/dt$ are related to temperature and heating rate, respectively, the data suggest that noise in each measurement should also be \sim4%. In fact, this is the level of noise that was used in the preceding example test cases. Therefore, these measurements from TGPs indicate that the example test cases are valid estimates of the errors we expect to see in practice.

Conclusions

A new approach to predicting heat flux is proposed, which may improve heat flux estimates by reducing instabilities inherent in temperature to heat flux data reduction methods. By measuring the heating rate, the integral equation for heat flux becomes a Volterra equation of the second kind, which is inherently more stable than the first kind. Analysis confirms that the method is more stable and can accommodate more noise than an approach that uses temper-
perature measurements. The method for measuring heat rate uses thermographic phosphors, which is already being used to measure temperatures.

Evaluations of the measurement technique indicate that the TGP measurement noise is similar in magnitude to temperature measurement noise. Consequently, estimates from heating rate data are expected to be much more stable and accurate than estimates from temperature measurements. Therefore, TGP measurements need to be tuned for each application. Despite the work that needs to be performed to raise the process to a production level, significant and inherent advantages can be seen from the foregoing proof-of-concept.

However, the example measurements are preliminary and future work will improve the reliability of the estimates. Furthermore, work needs to be done to characterize TGPs for these types of measurements. For example, the decay rate, excitation frequency, emission frequency, temperature range, and proximity sensitivities need to be tuned for each application. Despite the work that needs to be performed to raise the process to a production level, significant and inherent advantages can be seen from the foregoing proof-of-concept.

Acknowledgments

The author would like to thank Steve Allison at Oak Ridge National Laboratory for his experience and knowledge on making phosphor measurements and to Jay Frankel at the University of Tennessee for useful conversations on reduction of heat rate data. Furthermore, encouragement and guidance was provided by John Ahner in the Mathematics Department at Vanderbilt. The author would like to thank the reviewers whose comments and persistence greatly strengthened the paper.

Nomenclature

- t = time
- H = heating rate measurements or hypothesis
- I = phosphor emission intensity
- L = conduction domain length
- Q = normalized heat flux
- M = number of terms in the series
- N = number of measurements
- R = residual
- Y = measured temperatures

Greek

- β = eigenvalues
- θ = normalized temperature change
- η = normalized spatial dimension
- Λ = normalized heating rate
- τ = phosphor decay time
- ξ = normalized time
- Φ = basis functions

subscripts/superscripts

- d = difference
- i = summation index
- m = eigenvalue index
- n = noisy
- o = initial value
- r = measurement index

Table 4	Estimates of decay time parameters based on measured phosphor data		
I_o (V)	τ (ms)	$d\tau/dt$	
constant	$2.33 \times 10^{-3} \pm 2.76 \times 10^{-5}$	2.31 ± 0.038	n/a
linear	$2.42 \times 10^{-3} \pm 3.3 \times 10^{-5}$	2.21 ± 0.080	0.022 ± 0.0153

Table 5	Estimates of decay time parameters based on fabricated phosphor data		
I_o (V)	τ (ms)	$d\tau/dt$	
exact	2.33×10^{-3}	2.31	0.3
constant	$1.93 \times 10^{-3} \pm 2.93 \times 10^{-5}$	5.20 ± 0.116	n/a
linear	$2.40 \times 10^{-3} \pm 3.6 \times 10^{-5}$	2.27 ± 0.095	0.303 ± 0.010

Appendix

It is not immediately clear that the heating rate Eq. (9), evaluated at the surface will converge because of the first term in the summation.

$$\Lambda(\xi) = 2 \sum_{m=1}^{\infty} \left[Q(\xi) - \beta_m \int_0^\xi Q(\xi') e^{\beta_m(\xi'-0)} d\xi' \right].$$

(20)

Using integration by parts, the integral term can be expressed as

$$\beta_m \int_0^\xi Q(\xi') e^{\beta_m(\xi'-0)} d\xi' = [Q(\xi') e^{\beta_m(\xi'-0)}]_0^\xi - \int_0^\xi \frac{dQ(\xi')}{d\xi'} e^{\beta_m(\xi'-0)} d\xi'$$

(21)

$$= Q(\xi) - Q(0) e^{-\beta_m\xi} - \int_0^\xi \frac{dQ(\xi')}{d\xi'} e^{\beta_m(\xi'-0)} d\xi'$$

(22)

Now the heat flux $Q(\xi)$ in Eq. (22) cancels with the heat flux in Eq. (20) to give an equivalent infinite series

$$\Lambda(\xi) = 2 \sum_{m=1}^{\infty} \left[Q(0) e^{-\beta_m\xi} + \int_0^\xi \frac{dQ(\xi')}{d\xi'} e^{\beta_m(\xi'-0)} d\xi' \right].$$

(23)

Now the offending infinity has been eliminated. Because $0 < \xi' < \xi$, each term in the series contains an exponential with a negative exponent. As the eigenvalue increases, all terms will approach zero if the heat flux derivative is a bounded function. This assumption is not unreasonable because it represents a physical quantity and will not likely approach infinity. However, the series still may not converge because the value of the exponential will approach unity at the upper limit of the integral. Therefore, the convergence is undetermined because the function is pointwise bounded, not uniformly bounded.

Despite our inability to prove convergence in general, we can show that certain discretized forms of Eq. (20) do converge. Note that Eq. (23) should not be discretized directly as in Eq. (10), unless the first term is also summed and evaluated at the beginning of each discrete time step.

Fig. 18 Fit of fabricated noisy emission data using the constant and linear decay models

Transactions of the ASME
If we assume that the heat flux can be approximated by some piecewise function, the integral in Eq. (20) can be expressed as a sum of integrals

$$H_r = 2 \sum_{n=1}^{\infty} \left\{ Q_r - \beta_m^2 \sum_{j=1}^{r} \int_{\xi_j}^{\xi_j+1} Q(\xi) e^{\beta_m^2 (\xi - \xi_j)} d\xi \right\}$$ \hspace{1cm} (24)

where the functions are evaluated at discrete times, such that $\xi_r = r\Delta \xi$, $r = 1,2, \ldots$, $\xi_0 = 0$, $H_0 = H(\xi)$, $H_0 = 0$, $Q_r = Q(\xi_r)$, $Q_0 = 0$.

Now assume that the heat flux is given by some integrable function between time steps. The simplest is perhaps a constant, such that the value during the time step is also the value at the later time step,

$$Q(\xi') = Q_r, \quad \xi_{r-1} < \xi' \leq \xi_r.$$

Because $Q(\xi)$ is a constant, it can be taken outside of the integral, and the integral can be evaluated exactly.

$$H_r = 2 \sum_{n=1}^{\infty} \left\{ Q_r - \beta_m^2 \sum_{j=1}^{r} \frac{1}{\beta_m^2} e^{\beta_m^2 (\xi_j - \xi_{j-1})} \right\}.$$

(26)

The final term in the internal summation can be evaluated separately to obtain

$$H_r = 2 \sum_{n=1}^{\infty} \left\{ Q_r - Q_r [1 - e^{-\beta_m^2 \Delta \xi}] - \sum_{j=1}^{r-1} Q_r [e^{\beta_m^2 (\xi_j - \xi_{j-1})} - e^{\beta_m^2 (\xi_{j-1} - \xi_{j-2})}] \right\}.$$ \hspace{1cm} (27)

The advantage of this is that now the offending infinity in the outer summation has been canceled.

$$H_r = 2 \sum_{n=1}^{\infty} \left\{ Q_r e^{\beta_m^2 \Delta \xi} - \sum_{j=1}^{r-1} Q_r [e^{\beta_m^2 (\xi_j - \xi_{j-1})} - e^{\beta_m^2 (\xi_{j-1} - \xi_{j-2})}] \right\}.$$ \hspace{1cm} (28)

Each term in the summations can be expressed as some constant (the heat flux at a point in time in the sum of exponential). All the exponential terms can be expressed with an integer multiple of $\Delta \xi$ as

$$e^{\beta_m^2 \Delta \xi}, \quad n = 1,2,3, \ldots$$ \hspace{1cm} (29)

By examining the ratio of subsequent terms in each infinite sum,

$$\lim_{m \to \infty} \frac{a_{m+1}}{a_m} = \lim_{m \to \infty} e^{[2(m + 1)\pi/2]^2 \Delta \xi} = r,$$

we can determine whether the summation will converge. Following Cauchy, if the value of the limit r is less than one, the infinite summations will converge by the ratio test [36]. In the present case, the limit approaches zero.

$$r = \lim_{m \to \infty} e^{-2m^2 \pi^2 \Delta \xi} = 0,$$

for any positive n and m. Because each summation will converge, the entire equation converges.

Note that convergence can only be found as an artifact of the discretization. For example, if we define the constant heat flux to be the value at the time preceding the step,

$$Q(\xi') = Q_{r-1}, \quad \xi_{r-1} \leq \xi' < \xi_r.$$ \hspace{1cm} (32)

the behavior is not so well behaved. In this case, the discrete heat rate is given as

$$H_r = 2 \sum_{n=1}^{\infty} \left\{ Q_r - \beta_m^2 \sum_{j=1}^{r} Q_{r-1} \frac{1}{\beta_m^2} e^{\beta_m^2 (\xi_j - \xi_{j-1})} \right\}.$$ \hspace{1cm} (33)

once the constant heat flux is removed from the integral and the integral is evaluated. Similar to the previous example, we can evaluate the final term of the summation separately.

In this case, we end up with a term where $n = 0$. The limit given by Eq. (31) approaches one and convergence is undetermined.

For a piecewise linear heat flux approximation as presented in Eq. (7), the heating rate is given by Eq. (11). By considering the term where $i = r$ separately as before, Eq. (11) becomes

$$H_r = 2 \sum_{n=1}^{\infty} \left\{ Q_r - Q_r [1 - e^{-\beta_m^2 \Delta \xi}] - \sum_{j=1}^{r-1} Q_r [e^{\beta_m^2 (\xi_j - \xi_{j-1})} - e^{\beta_m^2 (\xi_{j-1} - \xi_{j-2})}] \right\}.$$ \hspace{1cm} (34)

The Q_r terms cancel. All other terms except one contain an exponential with a negative exponent, which has already been shown to converge [see Eq. (31)]. The last term to consider is

$$\frac{Q_r - Q_{r-1}}{\Delta \xi} = \frac{Q_r - Q_{r-1}}{\beta_m^2} \frac{1}{\Delta \xi} \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{j=1}^{\infty} e^{-2m^2 \pi^2 \Delta \xi} = 0.$$ \hspace{1cm} (36)

It can be shown that $\sum_{n=1}^{\infty} 1/n^2$ converges if and only if $p > 1$ (Corollary 4.3.7 from Belding and Mitchell [36]). Because $1/m^2 > 1/(2m - 1)^2$ for large m, the series in Eq. (36) converges by the comparison test. Now because each series in the equation converges, the equation for heating rate converges.

References

[16] Dunn, M. G., George, W. K., Rae, W. J., Woodward, S. H., Moller, J. C., and...

