Convection of Nanofluids in Commercial Electronic Cooling Systems

N.A. Roberts and D.G. Walker
Department of Mechanical Engineering
Vanderbilt University
InterPACK ’09
San Francisco, California, USA, July 19-24, 2009

Introduction
- Nanofluids are colloidal suspensions of nanoparticles in a base fluid
- Typical particles composed of chemically stable metals, oxides or carbon
- Particles range in size between 1 and 100 nm
- Base fluid usually water or organic liquids
- Shown to enhance thermal conductivity and possibly convection heat transfer
- Exhibit reduced sedimentation and erosion of containing surfaces compared to larger particles

Why do nanofluids exhibit enhanced properties?
Competing theories
1. Jang and Choi - Brownian motion results in micro or nano convection
2. Keblinski - Agglomeration or chaining of particles
3. Domingues - Near field radiation between close particles
4. Keblinski - More ordered structure of liquid at the solid interface

Experiment Setup
- The water block replaces the straight heated tube from the experimental setup (water block has a redundant micro channel design which we know very little about)
- The measured quantities are inlet and outlet temperature and the temperatures of the top and bottom of the heater
- The heater is a 10 W heater plugged into a wall outlet

Nanoparticles and Preparation
- Nanoparticles (Al2O3)
- γ 10 nm and 20-30 nm
- α 150 nm
- Preparation
 - Nanoparticles are added to DI-water
 - Particle/Water mixture is sonicated for 1 hour
- Results from DLS
 - Poly disp.:
 - 0.783 0.227

Validation
- Nearly equal pressure drop across the tube for all fluids
- Different from theoretical pressure drop for DI-water due to entrance effects and surface roughness
- Nearly equal temperature gain across the heated tube for the DI-water and the 0.5% nanofluid
- Greater temperature gain in the 1.5% nanofluid due to enhanced convective heat transfer

Results: Average Convection Heat Transfer Coefficients
Re = [14 : 360]

Results: Calculated Thermal Conductivity

Results: Commercial System
- Observed enhancement in convection heat transfer coefficient in laminar flow regime
- Enhanced thermal conductivity with increasing volume loading
- No noticeable settling of nanoparticles or development of aggregates within hours
- No noticeable enhancement in the commercial system is likely due to turbulent flow through channels
- If enhancement is reduced because of turbulence then theory #4 is likely