Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems

N.A. Roberts and D.G. Walker
Department of Mechanical Engineering
Vanderbilt University

May 30, 2008

Sponsor:
DARPA
Introduction

Thermal rectification is a phenomenon where transport through a device is dependent on direction

\[q = -kA \frac{dT}{dx} \]

\[q_1 > q_2 \]

\[k_1 > k_2 \]

- Widespread applications in thermal management problems
 - Cooling of micro/nano electronics
 - Improvement of macroscale refrigeration and energy saving buildings
Analog to *pn*-junction (Diode)

- In equilibrium electrons diffuse into *p*-type semiconductor and holes diffuse into *n*-type semiconductor, this creates the space charge region and built-in potential (voltage).
- A forward bias decreases the potential across the junction which enhances transport.
- A reverse bias increases the potential across the junction reduces transport resulting in minimal current flow.
- Thermal rectifying behaviour should be observed if a device could be created in which phonon transport can be manipulated.
Boltzmann Transport Equation

- Phonons treated as particles with distribution function \(f = f(\vec{r}, \vec{p}, t) \)

\[
\frac{\partial f}{\partial t} + \bar{v} \cdot \nabla_r f + \bar{F} \cdot \nabla_p f = \left(\frac{\partial f}{\partial t} \right)_{\text{scat}} \approx \frac{f_0 - f}{\tau_{\text{relax}}}
\]

- It is very difficult to obtain a closed-form solution
- In the current work we solve it using a probabilistic simulation known as Monte Carlo Method
Simulation Method

- **Initialization**
 - Number of phonons initially prescribed (1,000,000)
 - Randomly distributed throughout the device
 - Polarization and frequency obtained based on initial temperature
 - Momentum calculated from analytic dispersion relation

- Three-phonon and impurity scattering were not considered to investigate the system in the ballistic regime

- Cross sections of $100 \times 100 \text{ nm}$ to $1000 \times 1000 \text{ nm}$ and lengths of 100 nm to 1000 nm

\[
\omega(k) = \omega_{\text{max},b} \sqrt{\frac{1 - \cos ka}{2}}
\]

\[
D(k) = \frac{k^2}{2\pi^2 V_g}
\]

\[
V_g = \nabla_k \omega
\]

\[
\langle n \rangle = \frac{1}{\exp \left(\frac{\hbar \omega}{k_B T}\right) - 1}
\]
The device is composed of an isotropic material with Silicon-like properties

Max. longitudinal acoustic phonon frequency \(\Rightarrow \) \(1.23 \times 10^{13} \text{ Hz} \)
Max. transverse acoustic phonon frequency \(\Rightarrow \) \(4.5 \times 10^{12} \text{ Hz} \)

Normalized density function
\[
F(\omega) = \sum_b \frac{\int_0^{\omega_{\text{max},b}} \langle n \rangle D(\omega) d\omega}{\int_0^{\omega_{\text{max},b}} \langle n \rangle D(\omega) d\omega}
\]

- The normalized density function is a key element in this study by showing the concentration of high frequency (energy) phonons at a specified temperature
Definition of Direction and Frequency Dependent Boundaries

- Boundaries parallel to x-axis have direction and frequency dependence
 - Boundaries are flat in simulation
 - Directional dependence comes from asymmetric sawtooth geometry
 - Frequency dependence comes from specified surface roughness
 - Both dependencies come from different roughnesses of the surfaces

- If a phonon with negative x-momentum strikes a boundary parallel to the x-axis, a parameter, $p(\omega, \eta)$, is calculated based on the phonon frequency and characteristic roughness.
- If $p \ll 1$, the phonon has a high probability of a diffuse reflection.
- $p(\omega) = \exp \left[-\frac{64\pi^5 \eta^2 \omega^2}{V_g^2} \right]$
• l and w are length and width of the device, respectively
• t is the sawtooth depth (of order or smaller than dominate phon on wavelength)
• phonons moving to the right see “smooth” surfaces, phonons moving to the left see “rough” surfaces
Simulation Results - Temperature distribution

<table>
<thead>
<tr>
<th>T</th>
<th>10K</th>
<th>640K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta = 1 \times 10^{-9}$ m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta = 1 \times 10^{-10}$ m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta = 1 \times 10^{-11}$ m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta = 1 \times 10^{-12}$ m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta = 0$ m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation Results - Temperature difference at $T = 10\, \text{K}$

- Increased biasing with increased surface roughness of “rough” surface
- Increased biasing with increased aspect ratio (greater percentage of direction and frequency dependent surface area)
Simulation Results - Normalized temperature difference for $\eta = 5 \times 10^{-12} \text{ m}$

- Normalized temperature difference increases with increasing temperature and aspect ratio
- This increase with temperature is explained by the normalized density function
Conclusions

- Self-biasing devices can be achieved with the use of asymmetric geometries and surface roughnesses (anisotropic behavior in an isotropic material)
- With the addition of thermalizing boundaries we should see thermal rectification in the ballistic transport regime
- The impact of the boundaries will be reduced at higher temperatures when scattering is included and when the device surface area to volume ratio is decreased
- Fabrication
 - Atomically smooth $\eta = 0$
 - One unit cell variation $\eta \approx 0.5a$