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ABSTRACT

Thermoplasmonic structures produce highly localized tem-

perature fields. For simplicity, researchers often use a super-

position of representative spheres to model the temperature in

the non-conductive region (presumably a substrate) near the

metallic structures deposited on the substrate. The superposi-

tion model provides reasonable solutions, but direct comparison

to experiments is difficult because local temperature variations at

the nanoscale are not accessible. Moreover, the model requires

several approximations. Therefore, we compare this model to

other analytic models to determine the efficacy of the superpo-

sition approach in capturing temperature distributions close to

the surface of the substrate and to capture realistic boundary

conditions. Results indicate that a 3D analytic model can relax

approximations required for the superposition model and show

that the superposition model consistently over-predicts the sur-

face temperature.

INTRODUCTION

There has been recent interest in using nanoantennas for

nanoscale heat control that can be tuned remotely using light

[1,2]. These localized heat sources have applications in chemical

catalysis [3–5], heat-assisted magnetic recording [6,7], phononic

circuitry [8], and medical therapy [9–11].

We will discuss two methods for modeling the temperature

distribution in the substrate beneath a nanoantenna. The first, the

Laplace matrix inversion approach [12], models the antenna as a

collection of uniformmetal spheres. The temperature for a single

sphere is dictated by the spherical Green’s function that decays

as the inverse of the distance from the sphere. The temperature in

the substrate is a superposition of the contribution of each sphere

with a prescribed heat. The known total heat flux, Q, is dis-

tributed amongst the spheres such that each sphere has the same

temperature after the superposition. The redistribution of heat

generation enforces a constant temperature in the antenna that is

presumed due to the high conductivity of the antenna metal.

The second method uses a 3D Green’s function with a Neu-

mann boundary condition (prescribed heat flux) at the substrate

interface. The prescribed heat flux is motivated by the uni-

form generation within the antenna. If we think of the 3D

Green’s function solution as a superposition of infinitely small

point sources (not spheres) continuously distributed across the

antenna/substrate interfacce, then the two methods are conceptu-

ally equivalent, except the discreteness of the spherical model in-

troduces approximations that are unnecessary in the 3D Green’s

function approach.

PHYSICAL SETUP

We are interested in the heat transfer into the substrate of

the nanoantenna. The substrate (thermal conductivity k2) is im-

mersed in a fluid (thermal conductivity k1) and the antenna is

attached to the substrate (see Fig. 1). For the foregoing analy-

sis, we assume that the thermal conductivity of the fluid is much

smaller than the thermal conductivity of the antenna of the sub-

strate. Therefore, all the energy generated is dissipated into the

substrate.
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FIGURE 1. THE ANTENNA IS ATTACHED TO A SUBSTRATE

(THERMAL CONDUCTIVITY k2) WHICH IS IMMERSED IN A

FLUID (THERMAL CONDUCTIVITY k1).
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FIGURE 2. TOP: THE PHYSICAL SETUP FOR THE LAPLACE

MATRIX INVERSION METHOD. THE SPHERES ARE ALL

THE SAME TEMPERATURE. BOTTOM: TOP VIEW OF A

DIPOLE NANOANTENNA REPRESENTED AS A COLLECTION

OF SPHERES. IN THE BAFFOU PAPER [12] THE SPHERES ARE

ARRANGED IN A HEXAGONAL PATTERN, BUT WE USED A

RECTANGULAR PATTERN THAT WAS MORE SUITABLE FOR

THIS GEOMETRY.

LAPLACE MATRIX INVERSION

The Laplace Matrix Inversion (LMI) method [12] models

the antenna as a collection of metal spheres (see Fig. 2). A fun-

damental assumption of this method is that the spheres are all

uniform temperature. This is justified by the high thermal con-

ductivity of a metal antenna. If the total heat flux, Q, from the

antenna is known, it can be distributed amongst the spheres so the

the resultant temperature of each sphere is the same. The creation

of this “fictive” heat flux is outlined in more detail by Baffou et

al. [12]. If the heat flux is distributed uniformly or even accord-

ing to realistic data, superposition will almost always result in a

non-uniform temperature distribution in the antenna. As found

by solving Laplace’s equation, the temperature distribution for a

solid conducting sphere is given by

T (rrr,rrri) =



















Q

4πk |rrr− rrri|
for |rrr− rrri| ≥ a

Q

4πka
for |rrr− rrri| ≤ a

(1)

where a is the radius of the sphere. This solution is actually the

spherical Green’s function (point source) that has been truncated

at the sphere surface. This solution methodology begs the ques-

tion of whether the overall temperature distribution is dependent

on the sphere size. The heat generation Q will increase with the

cube of the sphere radius. But the inverse relationship with the

sphere radius results in a net increase in temperature with the

square of sphere radius. It is not clear that after superposition,

the temperature away from the sphere is independent of the size

of the sphere chosen. This involves the Green’s function for the

Laplace equation in spherical coordinates [],

G(r,a) =















−1

4πr
for r ≥ a

−1

4πa
for r ≤ a

(2)

Using the method of images, the Green’s function for a sphere in

the presence of a substrate is

G(rrr,rrri) =
1

4πk1

1

R

(

2k2

k2+ k1

)

for z≥ 0 (3)

where

R=

√

(x− xi)
2+(y− yi)

2+(z− d)2 (4)

and d is the distance of the sphere from the substrate. The internal

temperature at the center of a single sphere is then

Ti =
1

4πk

N

∑
j=1

[

1

|rrri− rrr j|
− k2− k1

k2+ k1

1

|rrri− rrr∗j |

]

q j (5)

where rrr∗j =
√
x j,y j,−z j and q j is the heat flux from sphere j. If

we let all Ti be equal, we have a linear system of equations for

the heat flux of each sphere. With the heat flux of each sphere,
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FIGURE 3. THE PHYSICAL SETUP FOR THE 3D GREEN’S

FUNCTIONAPPROACH. THE HEAT FLUX IS CONSTANTAT THE

ANTENNA/SUBSTRATE INTERFACE.

we can then use superposition to find the temperature at a given

point. For a better comparison with the 3D Green’s function

method, we let k1 = 0. An isolated sphere can have a uniform

temperature, but multiple spheres in the same region can not.

For example, a single sphere has a uniform interior temperature,

but a second sphere in the vicinity will increase the temperature

of the first sphere non-uniformly. With this in mind, the goal of

LMI is to create a fictive heat source distribution such that the

centers of each sphere are the same temperature.

3D GREEN’S FUNCTION APPROACH
In the second method, we are assuming a known heat flux,

q′′(x,y), at the antenna/substrate interface and no heat transfer

between the substrate and the fluid. These assumptions are valid

as long as the thermal conductivity of the antenna is much greater

than that of the substrate and the thermal conductivity of the sub-

strate is much greater than that of the fluid. With these assump-

tions, we can model this as a half-space with a Neumann bound-

ary condition at the dividing plane (see Fig. 3). The Green’s

function for the heat equation in this geometry is

G(x,y,z, t|x0,y0,z0,τ) =
(e−σ1 + e−σ2)

[4πα (t− τ)]3/2
(6)

where

σ1 =
(x− x0)

2+(y− y0)
2+(z− z0)

2

4α (t− τ)
,

σ2 =
(x− x0)

2+(y− y0)
2+(z+ z0)

2

4α (t− τ)
,

and α is the thermal diffusivity of the substrate. The temperature

at a given point is is then

θ (x,y,z, t) = α
k2

∫ ∞

−∞

∫ ∞

−∞

∫ t

0
q′′ (x0,y0)G|z0=0 dτ dx0 dy0 . (7)

In our case, q′′ is the total heat flux, Q, divided by the area of the
antenna if x0 and y0 are in the antenna region.

To develop a solution we first integrate over τ . Letting

ξ (x0,y0) = (x− x0)
2 +(y− y0)

2 + z2 to consolidate the spatial

information,

G|z0=0 = 2 [4πα (t− τ)]−3/2
exp

(

− ξ

4α (t− τ)

)

. (8)

The time integral in equation 7 can be performed with a change

of variable, η =
√

ξ/4α (t− τ):

∫ t

0
G|z0=0 dτ =

1

π3/2α
√

ξ

∫ ∞

η(τ=0)
exp(−η2)dη (9)

=
1

2πα
√

ξ
erfc

(

√

ξ
4αt

)

. (10)

The temperature distribution then becomes

θ (x,y,z, t) = 1
2πk

∫ ∞

−∞

∫ ∞

−∞
q′′ (x0,y0) 1√

ξ
erfc

(

√

ξ
4αt

)

dx0 dy0 .

(11)

These spatial integrals can be evaluated numerically using stan-

dard quadrature. Care must be taken at ξ = 0, where the inte-

grand is infinite. This routine is set up to ignore the singularity,

so G|ξ=0 = 0. This is only an issue at the antenna/substrate in-

terface.

RESULTS

For this project, we modeled a dipole nanoantenna with a

silicon-dioxide substrate (k2 = 1.38W/mK) in vacuum. The an-

tenna is rectangular (300nm× 100nm× 50nm). The total heat

transfer, Q, from the antenna is 0.1µW.

For the LMI method, the fictive heat flux distribution was

calculated so that the spheres were each at the same tempera-

ture and the total heat transfer, Q, from the antenna was 0.1µW.

The resultant temperature distributions under the antenna in the

substrate are shown in Figs. 4 and 5.

For the 3D Green’s Function method, the total heat transfer,

Q, is distributed evenly throughout the antenna. The resultant

temperature distributions in the substrate are shown in Figs. 6

and 7. The results from eachmethod are almost indistinguishable

far away from the antenna, but the 3D Green’s function approach

seems to give a steeper gradient near the antenna. Moreover, the

maximum temperature calculated using the 3D Green’s function

is significantly higher than the that of the LMI method.

A simplified analysis

Both methods gave a temperature increase of about 0.2K
near the antenna/substrate interface. We can also estimate ∆T
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FIGURE 4. ∆T (K) BELOW THE DIPOLE ANTENNA AS CAL-

CULATED BY THE LMI METHODWITH n= 4
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FIGURE 5. ∆T (K) AT THE SUBSTRATE SURFACE AS CALCU-

LATED BY THE LMI METHOD WITH n = 4. THE RECTANGLE

REPRESENTS THE POSITION OF THE ANTENNA.

using shape factors.

∆T =
QLc

kAsqs
(12)

where As = 2LxLy, Lc = As/4π , and qs = 0.932 [13]. For our

setup, ∆T = 0.1791K. This is reasonably close to the both the

3D Green’s function result (∆T = 0.2153) and the LMI result
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FIGURE 6. STEADY STATE ∆T (K) BELOW THE DIPOLE AN-

TENNA AS CALCULATED BY THE 3D GREEN’S FUNCTION

METHOD
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FIGURE 7. ∆T(K) AT THE SUBSTRATE SURFACE AS CALCU-

LATED BY THE 3D GREEN’S FUNCTION METHOD. THE RECT-

ANGLE REPRESENTS THE POSITION OF THE ANTENNA.

(∆T = 0.2033).

The effect of sphere size on the LMI solution is not yet clear.

The rectangular antenna has a ratio of 1:2:6 so the sphere size

can be adjusted to fit more small spheres, or less large spheres

in the z-direction. For example, if the number of spheres n = 1,

there are 1× 2× 6 = 12 spheres total, and the sphere radius a

is 1/2 height of the box. If n = 4, there are 4× 8× 24 = 768
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FIGURE 8. TEMPERATURE RISE AT (0,0,0) AS CALCULATED

BY THE LMI METHOD FOR VARIOUS SPHERE SIZES. THE

FINAL SOLUTION GIVEN BY THE 3D GREEN’S FUNCTION

METHOD (∆T = 0.2153) IS SHOWN FOR COMPARISON.

spheres as shown in Fig. 2. We calculated the temperature at the

point (0,0,0) as sphere size decreased (see Fig. 8). It appears that

the solution is not converged even at n = 14 (32,928 spheres).

Keep in mind that this method requires solving a system of 12n3

equations, which can become very computationally expensive.

CONCLUSION

The LMI method, which is an approximate solution for a

constant-temperature boundary condition, is easy to implement

and provides decent estimates for the steady-state temperature

response in a substrate and fluid surrounding an antenna. How-

ever, arbitrary antenna designs could be difficult to discretize

and the convergence of any discretized solution is dubious. The

3D Green’s function approach, which is an exact solution for a

constant-flux boundary condition, is easily extended to arbitrary

2D antenna designs and can naturally provide transient response

as well as steady-state solutions. Moreover, the 3D Green’s func-

tion approach does not have the convergence issues associated

with a discretized solution.
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